LFUCG Connected Vehicle Roadside Equipment - Connected Vehicle Roadside Equipment Functionality
Subsystem Description
'Connected Vehicle Roadside Equipment' (CV RSE) represents the Connected Vehicle roadside devices that are used to send messages to, and receive messages from, nearby vehicles using Dedicated Short Range Communications (DSRC) or other alternative wireless communications technologies. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers.
Functional Object: RSE Communications Relay
'RSE Communications Relay' provides message relay services that extend effective communications range to improve communications systems performance and robustness. It also supports safety applications such as wrong way vehicle detection and other applications where roadside communication of warnings beyond DSRC range are needed to compensate for high speeds or line of site/RF interference challenges.
Functional Object: RSE Environmental Monitoring
'RSE Environmental Monitoring' collects environmental situation (probe) data from passing vehicles that are equipped with short range communications capability. The collected data includes current environmental conditions as measured by on–board sensors (e.g., ambient temperature and precipitation measures), current status of vehicle systems that can be used to infer environmental conditions (e.g., status of lights, wipers, ABS, and traction control systems), and emissions measures reported by the vehicle. The functional object collects the provided data, aggregates and filters the data based on provided configuration parameters, and sends the collected information back to a center for processing and distribution. This functional object may also process the collected data locally and issue short–term road weather advisories for the road segment using short range communications.
Functional Object: RSE Queue Warning
'RSE Queue Warning' provides V2I communications to support queue warning systems. It monitors connected vehicles to identify and monitor queues in real–time and provides information to vehicles about upcoming queues, including downstream queues that are reported by the Traffic Management Center.
Functional Object: RSE Speed Warning
'RSE Speed Warning' notifies connected vehicles that are approaching a reduced speed zone, providing: (1) the zone's current posted speed limit and (2) any roadway configuration changes associated with the reduced speed zone (e.g., lane closures, lane shifts) if applicable, and (3) associated warning information (i.e., the reason for the reduced speed warning). Configuration parameters that define the applicable speed limit(s), geographic location and extent of the reduced speed zone, and roadway configuration information are received from a center or provided through a local interface. The characteristics of individual vehicles may also be monitored and used to warn vehicles with specific limitations that reduce safe operating speeds, (e.g., rollover risk for tall vehicles). This functional object works in conjunction with the 'Roadway Speed Monitoring and Warning' functional object, which uses traditional ITS field equipment to warn non–equipped vehicles.
Functional Object: RSE Traffic Monitoring
'RSE Traffic Monitoring' monitors the basic safety messages that are shared between connected vehicles and distills this data into traffic flow measures that can be used to manage the network in combination with or in lieu of traffic data collected by infrastructure–based sensors. As connected vehicle penetration rates increase, the measures provided by this application can expand beyond vehicle speeds that are directly reported by vehicles to include estimated volume, occupancy, and other measures. This object also supports incident detection by monitoring for changes in speed and vehicle control events that indicate a potential incident.